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OSCILLATIONS OF CYLINDERS

IN A LINEARLY STRATIFIED FLUID

UDC 532.59E. V. Ermanyuk and N. V. Gavrilov

The paper studies theoretically and experimentally hydrodynamic loads that act on horizontally placed
cylinders of rhombic and square cross sections, oscillating harmonically in a linearly stratified fluid.
An analytical solution is found with the use of affine similitude. Hydrodynamic force coefficients
were evaluated experimentally from Fourier transforms of records of damped oscillations in a time–
frequency region. It is shown that for polygonal contours, hydrodynamic loads change abruptly if the
slope of the polygon sides coincides with the slope of the internal-wave group velocity vector.

Introduction. Local characteristics of the field of internal waves generated by harmonic oscillations of
bodies immersed in an exponentially stratified fluid have been studied theoretically and experimentally [1–4]. Several
papers assess integral characteristics, such as the power expended for internal wave radiation and the hydrodynamic
load acting on oscillating bodies. Gorodtsov and Teodorovich [5] proposed an approximate method for estimating
the radiation power, in which a body is simulated by a distribution of special features obtained as a solution of the
problem for a heterogeneous fluid.

Estimates of hydrodynamic loads for vertical oscillations of an ellipsoid of revolution [6] and arbitrary
oscillations of an elliptic cylinder [7] were obtained in the Boussinesq approximation for an inviscid exponentially
stratified fluid with strict satisfaction of the nonpenetration condition on the body. Hurley and Keady [8] extended
the solution of [7] to a viscous fluid. Ermanyuk [9] tested experimentally Keady’s solution. We note that the
solutions of [6, 7] were constructed for particular body geometries and the method used in these studies cannot be
applied to bodies of arbitrary geometries. A solution for such bodies can be obtained using the relations of affine
similitude [10]. Ermanyuk [10] also gave experimental data for ellipses of revolution of various lengths.

In the present paper, the relations obtained in [10] are used to estimate theoretically the hydrodynamic
loads acting on horizontal cylinders of rhombic and square cross sections oscillating horizontally and vertically in
an exponentially stratified fluid. The solutions for horizontal oscillations were verified experimentally by using
the technique described in [9]. We note that the motion of contours with angular points in a stratified fluid was
studied only by Dalziel [11], who investigated experimentally the structure of the field of internal waves generated
by vertical oscillations of a square contour. The problem of contours with angular points oscillating in a viscous
inhomogeneous fluid is studied in detail in [12].

1. Theoretical Analysis. In the present paper, the problem of oscillations of flat contours in an exponen-
tially stratified fluid is a particular case of the problem of oscillations of three-dimensional bodies [10]. Governing
relations for the spatial case are formulated, and special features of the flat problem are studied. As in [10], we
use the model of an unbounded inviscid incompressible stratified fluid with the constant Brunt–Väisälä frequency
N(x3) =

√
−(g/ρ)(dρ/dx3) = const [ρ(x3) is the density distribution over the vertical in the Cartesian coordinates

(x1, x2, x3) and g is the acceleration of gravity].
The following physical considerations determine the range of parameters in which this model can be used.

Generally, a hydrodynamic load on a body of characteristic dimension L which is oscillating harmonically with
amplitude a and frequency ω in a viscous stratified fluid with N = const depends on the three main parameters:
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the dimensionless oscillation frequency Ω = ω/N , the Keulegan–Carpenter number a/L, and the Stokes number β =
L2ω/ν (ν is the kinematic viscosity of the fluid). For an ideal fluid with N = const, the main parameter is the
dimensionless frequency Ω, which acts as the Froude number in the present problem.

The scale of hydrodynamic loads in an ideal fluid depends on the body volume W . In a viscous fluid
with β � 1 and a/L� 1, an oscillating body is surrounded by a boundary layer of thickness of order δ∗ =

√
ν/ω.

Correspondingly, the fluid volume in which intense viscous dissipation of energy occurs in the vicinity of the body
is of order δ∗S (S is the surface area of the body). The viscous and inviscid effects are approximately characterized
by the quantity A = δ∗S/W . For large A, the viscous effect becomes dominant. For example, if a thin plate (body
of zero volume) oscillates in its plane, A→∞ and the viscous effect should be taken into account [13, 14].

If a/L ≈ 1, flow separation occurs in the vicinity of the body, which implies an increase in the effective
thickness β and parameter A. For bodies with angular points, separation occurs for relatively small a/L. The
theory of [12], which holds for a/L < 0.5, allows estimation of the hydrodynamic loads on cylinders with rhombic
and square cross sections in a heterogeneous fluid. For the range of parameters studied in the present paper, the
estimated effect of flow separation on oscillation characteristics is negligibly small because for a/L� 1 and β � 1,
viscous effects in a thin boundary layer around the body make a major contribution (linear in a/L) to damping,
whereas the contribution of local flow separations at the angular points is of order of (a/L)2. Obviously, this
estimate is also valid for a stratified fluid because in a small locality of the angular points, the local flow velocity
is high, and, hence, the contribution of local inertial effects determining flow separation is greater than that of the
buoyancy effects.

We note that in some cases of large a/L, in the vicinity of a body oscillating in a stratified fluid, structures
affecting the oscillation dynamics are formed (see, for example, a description of vortex and spear-shaped structures
in [15]). In the present paper, we do not consider this complex nonlinear problem.

The above considerations suggest that the model of an ideal stratified fluid used here gives adequate estimates
of real hydrodynamic loads for a/L� 1, A� 1, and β � 1.

Below, the equations of fluid motion are written for the “internal” potential [16]. If we assume that the body
motion velocity v(1), the “internal” potential ϕ(1), the fluid particle velocity u(1), and the pressure p(1) are harmonic
functions of time in the form v(1)(x1, x2, x3, t) = V (1)(x1, x2, x3)eiωt, the following problem can be formulated.

Problem 1. The equation of fluid motion has the form( ∂2

∂x2
1

+
∂2

∂x2
2

+
1
α2

∂2

∂x2
3

)
Φ(1) = 0, (1)

where α = (Ω2 − 1)1/2/Ω. Equation (1) can be either an elliptic or hyperbolic equation, depending on the sign
of α2. First, we consider the elliptic problem (α2 > 0). The pressure and velocity of the fluid particles in Problem 1
are expressed in terms of the potential as follows:

P (1) = −ρ0iωΦ(1), U (1) =
( ∂

∂x1
,
∂

∂x2
,

1
α2

∂

∂x3

)
Φ(1).

Here ρ0 is the characteristic density. The boundary condition on the body surface S(1) specified by the equa-
tion F (1)(x1, x2, x3) = 0 has the form

U (1) · ∇(1)F (1) = V (1) · ∇(1)F (1), (2)

where ∇(1) = (∂/∂x1, ∂/∂x2, ∂/∂x3). At infinity, we impose the condition Φ(1) → 0 as x2
1 + x2

2 + x2
3 →∞.

After affine transformation of the coordinate system

ξj = ajxj , aj = (1, 1, α), (3)

Problem 1 is converted to following problem.
Problem 2. The equation of fluid motion (1) is transformed into the Laplace equation( ∂2

∂ξ2
1

+
∂2

∂ξ2
2

+
∂2

∂ξ2
3

)
Φ(2) = 0. (4)

The boundary condition on the surface S(2) specified by the function F (2)(ξ1, ξ2, ξ3) = 0 takes the form

∇(2)Φ(2) · ∇(2)F (2) = V (2) · ∇(2)F (2), (5)

where ∇(2) = (∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3). The body velocity components are expressed similarly to (3): V (2)
j = ajV

(1)
j .

At infinity, we specify the condition Φ(2) → 0 as ξ2
1 + ξ2

2 + ξ2
3 →∞.
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The components of the hydrodynamic load vector y(1,2)(t) = Y (1,2)eiωt in Problems 1 and 2 are determined
by integration of the pressure P (1,2) = −ρ0iωΦ(1,2) over the body surface:

Y
(1,2)
k = −ρ0iω

∫
S(1,2)

Φ(1,2)n
(1,2)
k dS(1,2).

Here n(1,2)
k are the components of the unit vector of the internal normal to the body surface S(1,2).
It follows from Eqs. (4) and (5) that Problem 2 is a classical problem of oscillations of a body in an ideal

heterogeneous fluid. It is known that in Problem 2, the hydrodynamic load components can be expressed in terms
of the added-mass tensor components (see, for example, [17]):

y
(2)
k = −

3∑
j=1

m
(2)
jk

dv
(2)
j

dt
. (6)

Here v(2)
j = V

(2)
j eiωt are the body velocity components. The components of the added mass tensor

m
(2)
jk = ρ0

∫
S(2)

Φ(2)
j n

(2)
k dS(2) (7)

are determined from the solution of Problem 2 for unit potentials, which are described by the expansion

Φ(2) =
3∑
j=1

V
(2)
j Φ(2)

j . (8)

For Problem 1 [Eqs. (1) and (2)], relations similar to (6)–(8) can be introduced. In [10], for the added mass
coefficient tensors K(1)

jk = m
(1)
jk /(ρ0W

(1)) and K
(2)
jk = m

(2)
jk /(ρ0W

(2)) [W (1) and W (2) are the volumes of bodies
surrounded by the surfaces S(1) and S(2)], the following relation was obtained:

K
(1)
jk = K

(2)
jk ajak. (9)

For bodies of definite geometrical shapes with various ratios e = b2/b1 and q = b3/b2 of characteristic ellipse
dimensions b1, b2, and b3 in the directions ξ1, ξ2, and ξ3, the components of the added mass coefficient tensors in
Problem 2 are written in the form [18]

K
(2)
jk = fjk(e, q). (10)

For specified e0 and q0, the solution of Problem 1 for the added mass coefficient tensor can be obtained from Eqs. (9)
and (10):

K
(1)
jk (Ω) = fjk(e0, q0α)ajak. (11)

We note that in [19], relations of the type of (9) were obtained for the elliptic problem of a body moving
under the law v(t) = εv0eδt, where |v0| = 1 and ε and δ are small positive quantities. Vladimirov and Il’in [19]
determined the asymptotic behavior for small velocities.

If Ω < 1, Eq. (1) is a hyperbolic equation (α2 < 0). A special feature of the hyperbolic problem is the
radiation of internal waves by the oscillating body. In this case, the problem can be solved using the analytic
continuation

K
(1)
jk (Ω) = fjk(e0,−q0iη)γjγk, (12)

where η = (1− Ω2)1/2/Ω and γj and γk are 1, 1, and −iη for j, k = 1, 2, and 3, respectively. We note that unlike
in the case of Ω > 1 where m(1)

jk are real quantities, for Ω < 1, the quantities m(1)
jk are generally complex. In marine

hydrodynamics, the representation mjk = µjk − iλjk/ω [17] is commonly accepted, where µjk is the added mass
and λjk is the damping coefficient. The corresponding dimensionless quantities have the form

Cµjk = µjk/(ρ0W
(1)) = Re (K(1)

jk ), Cλjk = λjk/(ρ0NW
(1)) = Ω Im (K(1)

jk ). (13)

Equations (11) and (12) suggest that in the case of bodies with different q0 and fixed e0, the following
relations of affine similitude are valid:

K
(1)
jk /(ajak) = idem if q2

0α
2 = idem. (14)
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Fig. 1. Diagram of the experimental installation: 1) test tank; 2) conductivity probe;
3) wave breakers; 4) cylinder with square cross section; 5) pendulum; 6) steel ball;
7) rubber membrane; 8) electrolytic displacement sensor; 9) counterbalance.

For the spatial problem of horizontal oscillations of a body as Ω → 0 (α2 → −∞), Eq. (1) with boundary
condition (2) is reduced to a set of two-dimensional Laplace equations with the corresponding nonpenetration
conditions on horizontal cross sections of the body. The value of Cµ11 as Ω → 0 can be calculated by the flat cross
section method. As Ω→ 0, the imaginary part of hydrodynamic load coefficients vanishes.

In the two-dimensional problem, instead of the coordinates (x1, x2, x3), we use the coordinates (y1, y2) in
the plane x1 = 0 so that y1 = x2 and y2 = x3. In this case, the transformations of formulas (10)–(13) are obvious.
The quantities Cµmn and Cλmn (m and n take values of 1 and 2) are load coefficients per unit of length, and the
quantities W (1) and W (2) are the cross-sectional areas of horizontal cylinders in Problems 1 and 2. In addition,
in the flat problem, the functions fmn included in relations (10)–(12) are functions of the same parameter q. The
limiting transition Ω→ 0 corresponds to |q| → ∞. However, as |q| → ∞, any flat contour degenerates into a vertical
line. Hence, for horizontal oscillations as Ω → 0, only the vertical dimension of the cylinder matters but not the
shape of its cross section. For a cylinder of cross-sectional area W (1) and vertical dimension D, we can find the
limiting value of Cλ11(Ω) as Ω→ 0: Cλ11(0) = πD2/(4W (1)). For example, Cλ11(0) = 1 for a circle, π/2 for a rhombus
with a vertical diagonal, and π/4 for a square.

For an ellipse, the functions fmn(q) have the simple form: f11(q) = q and f22(q) = 1/q. For a cylinder of
rhombic cross section with a vertical diagonal, the functions fmn are given in [18]. In particular, for horizontal
oscillations of such a cylinder, the following relation holds:

f11(q) =
Γ[3/2− arctan (1/q)/π]Γ[arctan (1/q)/π]

Γ[1/2− arctan (1/q)/π]Γ[1− arctan (1/q)/π]
− 1. (15)

Here Γ is the Eulerian gamma function. For horizontal oscillations of a rectangle, the function f11 is given by [18]

f11(q) = πq(1− k2)(E(æ)− k2G(æ))−2/4− 1, (16)

where æ = (1− k2)1/2 and k is a root of the equation

E(æ)− k2G(æ) = q(E(k)− (1− k2)G(k)). (17)

Here G(k) =

π/2∫
0

(1 − k2 sin2 ϕ)−1/2 dϕ and E(k) =

π/2∫
0

(1 − k2 sin2 ϕ)1/2 dϕ are total elliptic first- and second-type

integrals. In the case of vertical oscillations of the rhombus and square, the functions f22 are obtained by substitution
of the variable 1/q for q on the right sides of (15)–(17). A comparison of the theoretical relations derived from
Eqs. (11) and (12) using Eqs. (15) and (16) is given in the experimental part of the present paper (Sec. 3).

2. Experimental Method. A diagram of the experimental installation is shown in Fig. 1. The experiments
were performed in a 2× 0.4× 0.15 m test tank filled with a linearly stratified fluid with layer thickness H = 0.36 m.
The fluid (solution of sugar) was poured by layers 2 cm thick with specified density difference between the layers.
The linear density distribution due to molecular diffusion was determined after 48 hours. The density distribution
over thickness was measured by a conductivity probe calibrated on samples of the solution of specified densities.
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The operation of the probe is based on the principle that the conductivity of sugar solved in distilled water increases
with increase in sugar concentration, and, hence, solution density.

The experiments were conducted for buoyancy frequency N = 1 sec−1, fluid layer thickness H = 0.36
m, temperature T = 15◦C, solution density near the tank bottom ρmax = 1.035 g/cm3, and viscosity νmax =
1.64×10−3 g/(cm · sec). The effect of the buoyancy frequency N on hydrostatic load coefficients was studied in [20].
The tank butt-ends were equipped with wave breakers. A cylinder with 3.7 × 3.7 cm square cross section was
fixed at the low streamline end of a physical pendulum in two positions such that either its side or diagonal were
oriented vertically. Pendulum motion was initiated by a steel ball falling on a rubber membrane. The pendulum
response was recorded by an electrolytic displacement sensor and processed by a personal computer. The coefficient
of the restoring moment of the pendulum was varied by changing the vertical coordinate of the counterbalance of
mass m = 188 g. Techniques for signal processing and estimating the dependences of dynamic characteristics of
oscillating bodies on frequency are given in [9].

The response of a linear system to the action of an arbitrary perturbation force h(t) can be written as

ζ(t) =

∞∫
0

r(τ)h(t− τ) dτ,

where r(t) is the system response to a unit pulse. In the particular case of a harmonic perturbation force h(t)=h0eiωt,
we have

ζ(t) = f0R(ω) eiωt . (18)

Here R(ω) = Rc(ω)−iRs(ω) =

∞∫
0

r(τ) e−iωτ dτ is the system response to a unit perturbating action in the frequency

range and Rc(ω) and Rs(ω) are the cosine and sinus Fourier transforms, respectively.
The equation of horizontal oscillations of the cylinder under the action of a harmonic perturbation force can

be written as

[M + µ11(ω)]
d2x1

dt2
+ λ11(ω)

dx1

dt
+ c11x1 = h0 eiωt, (19)

where M = J/l2 is the mechanical inertia of the system, J is the moment of inertia of the pendulum with respect
to the axis of rotation, l is the distance from the axis of pendulum rotation to the center of the body, and c11 is
the coefficient of the restoring force determined by statistical calibration. We note that J = J0 + mz2 (J0 = 1.12
× 106 g · cm2 is the intrinsic moment of inertia of the pendulum with respect to the axis of rotation and z is the
elevation of the center of gravity of the counterbalance above the axis of rotation of the pendulum). Setting x1 = ζ

and substituting (18) into (19), we obtain the following dependences of the added mass and the damping coefficient
on the frequency:

µ11(ω) =
c11

ω2

(
1− |R(0)|
|R(ω)|

cos θ(ω)
)
−M, λ11(ω) =

c11

ω

|R(0)|
|R(ω)|

sin θ(ω), (20)

where |R(ω)| = (R2
c(ω) + R2

s (ω))1/2, θ(ω) = arcsin (Rs(ω)/Rc(ω)), and |R(0)| is the value of |R(ω)| as ω → 0. By
normalizing |R(ω)|/|R(0)|, we process experimental records of damped oscillations obtained for an arbitrary initial
pulse.

Using the technique described, responses r(t) were recorded by a 12-bit analog-to-digital converter at a
sampling frequency of 20 Hz. Then, we calculated the function R(ω) using a standard fast Fourier transform
and estimated µ11(ω) and λ11(ω) by formulas (20). To obtain reliable information for the frequency range, we
processed 6–10 records of r(t) for various positions of the counterbalance corresponding to various values of c11.
The maximum horizontal deflection of the body center in the experiments was rmax/L < 0.05 (L is the side length
of the square cross section of the cylinder). Thus, the experimental results obviously correspond to harmonic
oscillation amplitudes a/L < 0.05.

Obvious technical difficulties hindered obtaining information for Ω→ 0 and Ω→∞. In fact, we studied the
range of 0.2 < Ω < 2. In this case, the Stokes parameter was varied within 230 < β < 2300. The value of A did
not exceed 0.2. Thus, the parameter range studied in our experiments matches the parameter range in which the
theoretical model used is applicable (see Sec. 1).
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Fig. 2. Typical record of damped horizontal oscillations of the center of the rhom-
bus r(t)/rmax (curve 1) and its approximation by the least-squares method ra(t)/rmax

(curve 2) for z = 115 mm and ω∗ = 0.83 sec−1.

3. Theoretical and Experimental Results. Figure 2 shows a typical record of damped horizontal
oscillations of the center of the rhombus r(t)/rmax in a continuously stratified fluid for z = 115 mm (curve 1).
The time is normalized to the buoyancy period 2π/N . The main qualitative features of the process follow from a
comparison of r(t)/rmax with the approximation ra(t)/rmax = B e−kt sin (ω∗t) obtained by the least-squares method.
Using this method, we found the values of B, k, and ω∗ minimizing the functional

I(B, k, ω∗) =

∞∫
0

[r(t)/rmax −B e−kt sin (ω∗t)]2 dt.

For a curve of ra(t)/rmax (curve 2 in Fig. 2), B = 0.96, k = 0.06 sec−1, and ω∗ = 0.83 sec−1.
The curve of ra(t)/rmax is a response of a linear oscillator whose inertial and damping characteristics do not

depend on the oscillation frequency. Oscillations of this oscillator are described by an equation of the type of (19)
whose coefficients are all constant. The oscillation period of the curve of ra(t)/rmax specified by 2π/ω∗ is constant.
It follows from Fig. 2 that the oscillation period of the curve of r(t)/rmax decreases with time. Theoretical studies
of “memory” systems, whose oscillations are accompanied by wave radiation [21], show that as t → 0 and t → ∞,
the inertial properties of such systems are determined by µ(∞) and µ(0), respectively. The fact that the oscillation
period decreases with time suggests the existence of the inequality µ(∞) > µ(0) in the frequency range.

The damping coefficient k of the curve of ra(t)/rmax does not depend on time; in contrast, the local value
of the damping coefficient of the curve r(t)/rmax decreases with time. Thus, oscillations with a longer oscillation
period (initial stage of oscillations) correspond to a larger value of the local damping coefficient; therefore, one can
expect the damping λ(ω) at low frequencies to be larger than that at higher frequencies. In fact, if Ω < 1, internal-
wave radiation observed is accompanied by great energy losses. If Ω > 1, the energy dissipation is determined by
viscous effects (effect of tangential stresses in the boundary layer in the vicinity of the body), as a result of which
the energy losses reduce significantly as compared with the case with Ω < 1.

We note that the above interpretation of the behavior of the curve of r(t)/rmax is based on considerations
following from the linear theory (in the experiments with rmax/L < 0.05). For large initial deflections of the body
from the equilibrium, nonlinear effects [15] complicate considerably the entire picture.

Figure 3 and 4 give experimental dependences Cµ11(Ω) and Cλ11(Ω) for a rhombus and a square and curves
obtained from relations (11), (12), (15), and (16).

In experiments with a homogeneous fluid, the normalization of λ(ω) and the argument ω by the quantities
ρ0NW and N from experiments with stratified fluids is of a formal character, and this allows us to compare the
experimental results for homogeneous and stratified fluids. In experiments with a homogeneous fluid, the damping
coefficient of a rhombus coincide with that of a square, which agrees with the results of [12], allowing for different
geometric dimensions used in normalization.

It follows from Figs. 3 and 4 that an abrupt decrease in the added mass coefficient (see Fig. 3) and a local
minimum of the damping coefficient (Fig. 4) are observed at an oscillation frequency Ω∗ ≈ 0.7. At this frequency,
the angle between the internal-wave group velocity and the horizontal line ψ = arcsin Ω [1] coincides with the slope
of the rhombus sides. We note that the behavior of the curves of Cµ11(Ω) and Cλ11(Ω) for the rhombus as Ω → 0.7
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Fig. 3 Fig. 4

Fig. 3. Added mass coefficients for horizontal oscillations of a rhombus (1) and a square (2): the
curves refer to calculations and points to experiment; curve 3 is a theoretical result of [7] for a
circular cylinder.

Fig. 4. Damping coefficients for horizontal oscillations of a rhombus and a square (notation same as
in Fig. 3); curve 4 is the approximation of the experimental data for the rhombus and the square
in the case of a homogeneous fluid.

Fig. 5 Fig. 6

Fig. 5. Added mass coefficients for vertical oscillations of the rhombus and the square: curve 1
refers to the theoretical data [7] for a circular cylinder, curve 2 to the solution for a square contour,
and curves 3–5 refer to the theoretical data for rhombuses with various length ratios of vertical and
horizontal diagonals [1 :

√
3 for χ = 30◦ (3), 1 : 1 for χ = 45◦ (4), and

√
3 : 1 for χ = 60◦ (5)].

Fig. 6. Damping coefficients for vertical oscillations of the rhombus and the square (notation the
same as in Fig. 5).

(limit on the right) is similar to that for the square as Ω → 0. If Ω = 0, ψ = 0, i.e., the internal-wave group
velocity is parallel to the upper and lower sides of the square contour.

The experimental results show that viscous effects affect slightly the added mass coefficient (see Fig. 3).
The shape of experimental curves of Cµ11(Ω) is close to the shape of theoretical curves. An insignificant systematic
excess of experimental values over theoretical estimates [approximately 5% of the value of Cµ11(∞)] can be explained
by the effect of a limited fluid layer thickness in the experimental installation.

If Ω > 1, the damping coefficients Cλ11(Ω) for the rhombus and the square in homogeneous and stratified
fluids virtually coincide within the experimental error (see Fig. 4). The total damping coefficient Cλ11(Ω) can be
written as the sum of the wave Cλw11 (Ω) and viscous Cλv11 (Ω) damping coefficients. If Ω < 1, the damping coefficient
for a stratified fluid exceeds considerably that for a homogeneous fluid due to energy expenditure for the internal-
wave radiation. As a first rough approximation, Cλ11 ≈ Cλw11 for Ω < 1 and Cλ11 ≈ Cλv11 for Ω > 1. A possible, more
detailed, representation of the wave and viscous components is given in [20].
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In the present paper, the dynamic characteristics of vertically oscillating bodies were not studied experi-
mentally. The theoretical data on Cµ22(Ω) and Cλ22(Ω) for squares and rhombuses with various side slopes to the
horizontal line χ obtained from (11) and (12) are given in Figs. 5 and 6, respectively. As in the case of horizontal
oscillations, at frequency Ω∗ =

√
2/2 ≈ 0.7, a rhombus with a 1 : 1 ratio of diagonal lengths behaves critically:

the curve of Cµ22(Ω) has a local maximum and the curve of Cλ22(Ω) exhibits a distinct local minimum. For other
ratios of diagonal lengths, the dependences Cµmn(Ω) and Cλmn(Ω) and the quantity Ω∗ change according to the affine
similitude relations (14). In this case, the general characteristics of these dependences remain unchanged (curves
3–5 in Figs. 5 and 6). From elementary geometrical considerations, the critical effects for rhombuses with χ = 30
and 60◦ take place for Ω∗ = 0.5 and

√
3/2.

As Ω → 0, the square contour enters a special regime in which the internal-wave group velocity is directed
almost similarly to the horizontal sides of the contour. Calculations show that as Ω→ 0, the added mass coefficient
of the square Cµ22(Ω) takes large negative values (see Fig. 5), and the damping coefficient Cλ22(Ω) increases abruptly
(see Fig. 6). For a square contour, we assume the existence of a special critical regime as Ω→ 1, in which the group
velocity is directed similarly to the vertical sides of the square contour. However, because the modulus of the group
velocity tends to zero, no specificity related to the contour geometry arises as Ω→ 1. If Ω = 1, then Cλwmn = 0 and
Cµmn = 0 for any contours. A circular cylinder has Cµ11 = Cµ22 and Cλ11 = Cλ22 in accordance with the solution of [7].
Unlike in this case, for cylinders with rhombic and square cross sections, the quantities Cµmn(ω) and Cλwmn(ω) differ
for vertical and horizontal oscillations. As Ω→∞, in an infinite fluid with N = const, the added mass coefficients
for rhombuses and squares coincide: Cµ11(∞) = Cµ22(∞) ≈ 1.19.

Conclusions. Thus, in a stratified fluid with horizontal cylinders of polygonal cross sections, hydrodynamic
load coefficients change abruptly at the oscillation frequency Ω∗ at which the slope of the internal-wave group
velocity coincides with the slope of a cylinder side. In the spatial case, these effects are manifested, for example, for
bodies formed by rotation of a rhombus about its vertical diagonal. The slope of the internal-wave group velocity
coincides with the slope of the characteristic lines of Eq. (1) if α2 < 0. The structure of Eq. (1) coincides with
that of the governing equation of the theory of a thin profile in a compressible gas flow (in this case, the parameter
1/Ω acts as a Mach number). The thin wing theory considers a particular case of large Mach numbers, where
characteristic lines “lie” on the body surface. The present paper studied an analog of this problem that arises in
the theory of internal waves as Ω→ Ω∗.
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